Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.

نویسندگان

  • Kevin V Brix
  • Robert Gerdes
  • Martin Grosell
چکیده

A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia

Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in ma...

متن کامل

Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater invertebrates.

The acute toxicity of sulfate to Ceriodaphnia dubia, Chironomus tentans, Hyalella azteca, and Sphaerium simile was assessed to support potential updates of Illinois (USA) sulfate criteria for the protection of aquatic life. The mean lethal concentrations to 50% of a sample population (LC50s), expressed as mg S04(-2)/L, in moderately hard reconstituted water (MHRW) were as follows: 512 mg/L for ...

متن کامل

Multi-linear regression models predict the effects of water chemistry on acute lead toxicity to Ceriodaphnia dubia and Pimephales promelas.

The current study examined the acute toxicity of lead (Pb) to Ceriodaphnia dubia and Pimephales promelas in a variety of natural waters. The natural waters were selected to range in pertinent water chemistry parameters such as calcium, pH, total CO(2) and dissolved organic carbon (DOC). Acute toxicity was determined for C. dubia and P. promelas using standard 48h and 96h protocols, respectively...

متن کامل

Development and validation of a biotic ligand model for predicting chronic toxicity of lead to Ceriodaphnia dubia.

While it is increasingly being recognized that biotic ligand models (BLMs) are valuable in the risk assessment of metals in aquatic systems, the development of chronic BLMs has been less advanced for lead than for other metals. The authors investigated the univariate effects of Ca and pH on the chronic reproductive toxicity of Pb to Ceriodaphnia dubia at 4 levels. Calcium influenced chronic Pb ...

متن کامل

Wastewater treatment polymers identified as the toxic component of a diamond mine effluent.

The Ekati Diamond Mine, located approximately 300 km northeast of Yellowknife in Canada's Northwest Territories, uses mechanical crushing and washing processes to extract diamonds from kimberlite ore. The processing plant's effluent contains kimberlite ore particles (< or =0.5 mm), wastewater, and two wastewater treatment polymers, a cationic polydiallydimethylammonium chloride (DADMAC) polymer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecotoxicology and environmental safety

دوره 73 7  شماره 

صفحات  -

تاریخ انتشار 2010